

Building Science Specialist Board 2800-14th Ave., Suite 210 Markham, ON L3R 0E4 Tel: 416-491-2886

www.BSSB.com

2023 Mechanical Systems Exam Learning Objectives

Introduction to HVAC Systems, Thermal Comfort and Indoor Air Quality

- 1. Describe the typical functions of an HVAC system
- 2. Describe the difference between "all air systems", "air/water systems" and "all water systems"
- 3. Describe how commercial HVAC design differs from residential design
- 4. Discuss the different terms/metrics used for heating and cooling equipment efficiency and capacity
- 5. Recognize the advantages and disadvantages of the various HVAC systems
- 6. Describe the importance of establishing zones for the purposes of space conditioning
- 7. Define "operative temperature" and demonstrate how it is calculated
- 8. List common indoor air contaminants and their sources including particulate matter, Second Hand Smoke, carbon monoxide, carbon dioxide, Radon, Ozone, Formaldehyde, Acrolein, Mould
- 9. Calculate the concentration of various contaminants given rates of contaminant generation
- 10. Describe how indoor contaminants can be controlled through source control, air exchange, air filtration
- 11. Calculate the outdoor air requirement for a zone according to ASHRAE Standards 62.1 and 62.2
- 12. Define ventilation effectiveness and be able to calculate it
- 13. Describe what a MERV rating on a filter represents and how different MERV values impact filtration.

Thermodynamics

- 14. Calculate state properties of moist air, refrigerant, and steam
- 15. Explain the thermodynamic cycles that are relevant to HVAC (Carnot, Reverse Carnot, Rankine Power, Rankine Refrigeration)

Psychrometrics

- 16. Describe the difference between sensible and latent heat in moist air
- 17. Demonstrate how the psychrometric chart can be used to illustrate common HVAC processes (e.g. air mixing, heating and humidification, typical air conditioning) and the impact of these processes on dry and wet bulb temperature, relative humidity, enthalpy, density and moisture content
- 18. Demonstrate proper use of the enthalpy/humidity ratio scale and the sensible heat/total heat ratio scale
- 19. Describe how by-pass factors can be used to approximate the state of air following humidification when only a portion of the air comes in contact with a cold coil

Heating and Cooling Loads

- 20. Explain the purpose of Design Days
- 21. Calculate the sensible and latent heat losses associated with air leakage
- 22. Estimate air leakage using the air change method and the crack method
- 23. Explain what parameters are considered in heating load calculations and how they differ from those considered in cooling load calculations
- 24. Calculate the peak heating load for a building (conduction losses and air leakage) with a constant indoor temperature
- 25. Describe the various sources of internal gains and how they impact sensible and latent loads
- 26. Describe how heat is transmitted through opaque envelope elements
- 27. Calculate the total solar heat gain and conduction gains/losses through windows
- 28. Calculate the heat gain contribution from occupants based on the number of occupants and metabolic rate
- 29. Calculate the heat gain from lighting and equipment
- 30. Conduct a sensible heat balance on a single zone and identify whether heating or cooling is required
- 31. Conduct a latent heat balance on a single zone and identify whether humidification or dehumidification is required
- 32. Describe how increased thermal mass can impact cooling load
- 33. Calculate the peak cooling load for a building
- 34. Discuss how improved enclosure performance can impact HVAC system sizing.

HVAC Equipment

- 35. Describe common heat exchangers in HVAC (shell and tube, cross-flow air coils, plate and frame), where they are typically used and what factors influence the quantity of heat transferred.
- 36. List the various types of heating and cooling equipment available for both commercial and residential applications and how their efficiencies typically compare
- 37. Discuss the operating requirements for condensing equipment
- 38. Describe the equipment required for a chilled water plant and how they are connected to one another
- 39. Describe how an air conditioner works
- 40. Describe how an air source heat pump works
- 41. Calculate pipe and duct losses for various dimensions and fittings
- 42. Use the fan and pump laws to describe the factors that influence fan and pump performance
- 43. Describe the difference between heat recovery ventilation systems and energy recovery ventilation systems
- 44. Understand the advantages and disadvantages of dedicated outdoor air systems (DOAS)
- 45. Describe the components required for a typical HVAC control system
- 46. Discuss the importance of deadbands on a thermostat